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Orthosymmetric ortholattices (OSOLs) have been introduced in order to 
approximate ortholattices of closed subspaces of a Hilbert space. In this paper, 
some new properties of OSOLs are proved and the main result states that lattices 
of projections of Rickart *-rings, satisfying 2x = 0 implies x = 0, carry a natural 
structure of OSOL. 

I N T R O D U C T I O N  AND MOTIVATION 

A purpose of quantum logic is the characterization of the variety gener- 
ated by Hilbert lattices ~(H) ,  which are lattices of all closed subspaces of 
a Hilbert space H. A motivation is the research for a set of axioms for a 
syntactical presentation of quantum logic since Kalmbach (1983, w exercise 
21) proved that this variety (in the language of ortholattices) is strictly 
contained in the class of all OMLs (orthomodular lattices). Kalmbach used 
the ortho-Arguesian law, an equation discovered by A. Day, which fails in 
some OMLs and is valid in all Hilbert lattices. At the same time, R. Godowski, 
R. Greechie, and R. Mayet obtained, by means of methods using states, an 
abundance of varieties of OMLs containing the one generated by Hilbert 
lattices. More recently, R. Mayet has suggested a new idea: Hilbert lattices 
have a very rich structure and, besides the classical operations of meet, join, 
and orthocomplementation, they possess other natural operations and so they 
can be investigated in languages extending the language of ortholattices. For 
example, there exists an operation which associates to the closed subspaces 
X and Y the closed subspace symmetrical to Y with respect to X. Mayet 
(1991) gives a list of axioms verified by this operation; OMLs satisfying 
these axioms are called OSOLs (orthosymmetric ortholattices). The interest 
of the axioms of R. Mayet has been confirmed in Hamhalter and Navara 
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(1991): if the dimension of the underlying Hilbert space H is greater than 3, 
there exists a unique structure of OSOL on ~(H),  the natural one defined 
by orthogonal symmetries. The power of the method is also illustrated by 
Mayet and Pulmannov~ (1994), where a generalization of the structure of 
OSOL allows one to distinguish complex Hilbert lattices and real or quaterni- 
onic ones by means of equations. 

The purpose of Section 1 of this paper is to prove some new properties 
related to the lattice structure of OSOLs. Some of them are already known 
in the particular case of projection lattices of associative or Jordan operator 
algebras and this fact points out another interest of OSOLs: to give a common 
algebraic setting for the study of symmetries in operator algebras. Section 2 
contains the main result, which states that projection lattices of Rickart 
*-rings, satisfying the condition 2x = 0 implies x = 0, carry a natural structure 
of OSOL. The last section is devoted to examples and open questions. 

For notions concerning orthomodular lattices, see Kalmbach (1983). For 
tings with involution, Berberian (1972) is a standard reference. In an OML, 
we denote by +a the Sasaki projection on a defined by ~b~(b) = a A (a • v 
b) and aCb means that a and b commute. 

1. GENERAL PROPERTIES OF OSOLS 

By definition (Mayet, 1991; Mayet and Pulmannov~, 1994) an OSOL 
is an ortholattice L equipped with a binary operation S satisfying the following 
axioms, where S(a, b) is denoted by S~(b): 

�9 OSOLI: Every mapping Sa is an involuntary automorphism of the 
ortholattice L and S, o Sb o Sa = Ss,~,). 

" OSOL 2" a _L b implies S~ o Sb = Sb o Sa = S~vb. 
�9 OSOL3: S,(b) = b if and only if aCb. 

Every OSOL is an OML and notice that OSOL3 replaces the original axiom 
of Mayet (1991): a v ~bh(a ) = a v Sb(a). The equivalence of these two axioms 
is proved in Mayet and Pulmannov~ (1994). 

Two elements a and b of an OSOL L are said to be exchanged by a 
symmetry if there exists c ~ L such that b = So(a). The following result has 
already been proved in the particular framework of operator algebras; see, 
for example, Topping (1965), Theorem 7. 

Proposition 1. Two elements of an OSOL L exchanged by a symmetry 
are strongly perspective. 

Proof Let a and b two elements of L. A direct computation, using some 
results of Mayets (1991), leads to 
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b v ~)a(b) = Sa(b ) v (~)a(b) = b v Sa(b ) 

b ~, ~ba(b) = S.(b)/~ qba(b) = b t, a 

and thus a common complement of b and S.(b)  in [0, b v S.(b)] is 

c =  qb~(b) A (a A b) • = a ^ (a l v b) A (a • v b l )  

In the next proposition, we give formulas for the central cover, denoted 
by l a l ,  of an element a of an OSOL which is a complete lattice. Similar 
properties are known in operator algebras. 

Propos i t ion  2. In a complete OSOL L we have 

V S x ( a ) =  V +x(a) and la[ = V Sq "'" S~,,(a) 
xEL xEL xiEL 

If, moreover, L has the relative center property, then 

lal = v S:~(a) 
x e L  

P r o o f  The first identity is a straightforward consequence of S, (a)  = a, 

r = a, and a v Sx(a) = a v qb,(a). Now let 

h = V S x , ' " S x , , ( a )  
xi~L 

For all y s L, we have 

SySx~ "'" &,,(a) -< h 

and thus Sy(h) --- h, which implies yCh.  The element h is central and, by using 

Sx, "'" Sx,,(a) <-- Sx, " "  Sy,,(la 1) = lal 

we have h <- l a land,  as Sa(a) = a, we conclude h = l a I" The last formula 
is a consequence of Chevalier (1991), Proposition 10. 

2. OSOL STRUCTURES IN PROJECTION LATTICES OF 
RICKART *-RINGS 

In Hamhalter and Navara (1991) and Mayet (1991) the structure of 
OSOL in Hilbert lattices is described in the setting of subspaces and the 
authors consider for each closed subspace X of a Hilbert lattice H the mapping 
~x which associates to a closed subspace Y the subspace ~rx(Y), symmetrical 
to Y with respect to X. The OML C(H) is isomorphic to the lattice Proj(H) 
of all orthogonal projections of H; an isomorphism is the mapping which 
associates to a closed subspace X the projection admitting X as range. If p 
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and q are two projections of  H, with respective ranges X and Y, then the 
range of  the projection (2p - 1)q(2p - 1) is (rx(Y). Thus in the setting of  
projections, the mapping S o defined by So(q) = (2p - l)q(2p - 1) replaces 
COx. More precisely, we have the following result. 

Proposi t ion 3. For every idempotent p of  a ring A, let Sp be the mapping 
defined for all x E A by 

Then: 

1. 
2. 

So(x ) = (2p - 1)x(2p - 1) 

S o is an involuntary automorphism for the ring structure o f  A. 
S o conserves the set Idem(A) of  all idempotents of  A and is an order 
automorphism of  Idem(A) ordered by p -< q if and only i f p q  = qp 
= p .  

3. If, moreover, A is a ring with an involution x ~ x* and if p is a 
projection, then S o conserves the set Proj(A) of  all projections o f  A 
and is an involutary automorphism for the structure of  the weak 
generalized orthomodular poset (WGMOP)  of  Proj(A). 

The proof  is routine and information about W G M O P  may be found in 
Mayet-Ippoli to (1991). The next proposition shows that the ring A, equipped 
with the set of  involutary automorphisms So, p ~ Idem(A), satisfies properties 
very close to these o f  an O S O L  

Proposi t ion 4. With notation as in Proposition 3 and if p and q are two 
idempotents of  A, then: 

1. so o o so = 

2. pq  = qp = 0 implies Sp o Sq = Sq o S o = Sp+q. 
3. pq  = qp implies So(q) = q and So(q) = q implies 2pq = 2qp. 

P r o o f  1. For x ~ A, we have 

S o o Sq o So(x ) = (2p - 1)(2q - 1)(2p - 1)x(2p - 1)(2q - 1)(2p - 1) 

= So(2 q - 1 ) x S p ( 2 q -  1) 

= [2So(q) - 1]x[2Sp(q) - 1] = Ssp(q~(X) 

2. I f p q  = qp = 0, then p + q is an idempotent and (2p - 1)(2q - 1) 
= - [ 2 ( p  + q) - 1]. Thus 

Sp o Sq(X) = (2p - 1)(2q - 1)x(2q - 1)(2p - 1) 

= [2(p + q) - 1]x[2(p + q) - 1] = Sp+q(X) 
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3. Clearly, if pq = qp, then St(q) = q. Conversely, Sp(q) = q implies 
4pqp = 2pq + 2qp and right and left multiplication by the idempotent p 
yields 4pqp = 2pqp + 2qp and 4pqp = 2pq + 2pqp. Therefore, 2pq = 2qp. 

Notice that part 3 of the previous proposition contains a difficulty: Sp(q) 

= q only implies 2pq = 2qp. For the more convenient conclusion pq = qp, 

it will be necessary to assume something about A, for example, 2x = 0 
implies x = 0. 

Recall that a Rickart *-ring is a ring with involution in which the right 
annihilator of every element is a principal right ideal generated by a projection 
(Berberian, 1972). 

Theorem 1. Every projection lattice of a Rickart *-ring A, satisfying the 
condition 2x = 0 implies x = 0, has a natural structure of an OSOL. 

Proof  Consider the family of involutary automorphisms of Proj(A) { Sp I p 
Proj(A)}. It is easy to see that Proj(A) is an OSOL, by using Propositions 

3 and 4 and the two following results fulfilled by every Rickart *-ring: 

�9 Two projections p and q are orthogonal if and only if pq = qp = 0 

and, for two orthogonal projections, p v q = p + q. 
~ Two projections p and q commute (in the sense of OML theory) if 

and only if pq = qp. 

3. REMARKS, EXAMPLES, AND QUESTIONS 

1. Lattices of projection of von Neumann algebras, Rickart C*-algebras 
(C*-algebras which are Rickart *-rings), and AW*-algebras (Rickart C*- 
algebras with a complete lattice of projections) are OSOLs. In case of yon 
Neumann algebras a different proof may be found in Mayet (1991). 

2. There exists a Jordan version of Theorem 1: every lattice of idempo- 
tents of a JBW-algebra is an OSOL. A sketch of a proof is as follows. 
Consider, for each idempotent p of a JBW-algebra A [see Hanche-Olsen and 
Stcrmer (1984) for information] with a Jordan product denoted by o, the 
mapping Sp defined by Sp = U2p-I, where Ua(x) = 2a o (a o x) - a 2 o x. 

Mappings Sp are involutary automorphisms of the Jordan algebra A and they 
conserve the OML Idem(A) of all idempotents of A. Notice that in a special 
Jordan algebra, where the associative product is denoted by juxtaposition, 
Sp(x) = (2p - 1)x(2p - 1) and OSOLI, OSOL2, OSOL3 involve only two 
or three variables. Therefore, the Shirshov-Cohn and Macdonald theorems 
may be used to reduce the Jordan case to the associative one. The characteriza- 
tion of commutativity in Idem(A) given in Chevalier (1994), Proposition 13, 
is also useful. 

3. What happens if the rings A does not satisfy 2x = 0 implies x = 0? 
Notice that a Boolean algebra A is a Rickart *-ring satisfying 2x = 0 for all 
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x and there exist a unique OSOL structure on A = Proj(A) defined by Sp(q) 

= q (Mayet, 1991). 
4. Hilbert lattices possess a uniquely determined O S O L  structure if the 

dimension of  the underlying Hilbert space is greater than 3. Does this result 
generalize to some lattices o f  projections of  Rickart *-rings? Notice that if 
L is the projection lattice of  the Rickart *-ring of  all endomorphisms of  the 
linear space R 2, then there is more than one structure of  OSOL on L. Define, 
for any atom a ~ L, S,,(b) = b"  if b is an atom such that b v~ a, b 4: a • 
and S~(b) = b otherwise (Mayet, 1991). We obtain in this way a structure of  
OSOL on a projection lattice of  a Rickart *-ring different f rom the natural one. 

5. Kaplansky introduced in a Rickart *-ring the square-root axiom, 
namely: 

(SR) For each element x, there exists r in the double commutant  of  
{xx*} such that r* = r and xx* = r 2. 

Every C*-algebra satisfies the SR axiom and, in the presence of  the SR 
axiom, there exist many results related to the exchange by symmetry (Maeda, 
1975; Maeda and Holland, 1976). What  are the nonclassical Hilbert spaces 
satisfying this axiom? 
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